Pressure Vessel Scaling, first order:

given the invariants:

Gas (ideal) mass: $M_{gas.}$ material strength: S length/radius ratio: C vessel mtl. density: ρ and, given initial conditions and dimensions:

pressure:
$$P_1$$
 radius: R_1 length: $L_1 := C \cdot R_1$

assume spherical or elliptical ends requiring similar thickness to cylindrical section

then: thickness:
$$t_1 := \frac{P_1 \cdot R_1}{S}$$

vessel volume:
$$V_1 := 2\pi R_1^2(C \cdot R)$$

and, mass of vessel
$$\mathbf{M}_1 \coloneqq \rho \bigg(2\pi {R_1}^2 \mathbf{t}_1 + 2\pi R_1 \cdot \mathbf{L}_1 \cdot \mathbf{t}\bigg)^{\blacksquare} \quad \mathbf{M}_1 \coloneqq \Big(1 + C\Big) \rho \cdot 2\pi {R_1}^2 \mathbf{t}_1^{\blacksquare}$$

or, simply
$$V \equiv R^{3} \qquad \quad t \equiv P \cdot R^{4} \qquad \quad M \equiv t \cdot R^{2}$$

now, double the radius

then
$$\begin{aligned} R_2 &\coloneqq 2R_1 \\ V2 &\coloneqq \left(2R_1\right)^3 \quad V_2 &\coloneqq 8V_1 \end{aligned}$$

and
$$P_2 := \frac{1}{8}P_1$$

then
$$t_2 := \frac{1}{8} P_1 \cdot 2R_1$$
 $t_2 := \frac{1}{4} t_1$

but
$$M_2 := \frac{1}{4} t_1 \cdot (2R_1)^2$$
 $M_2 := M_1$

Vessel mass is proportional to gas mass, and invariant to dimensional changes